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Abstract—Many software defect prediction approaches have
been proposed and most are effective in within-project prediction
settings. However, for new projects or projects with limited
training data, it is desirable to learn a prediction model by
using sufficient training data from existing source projects and
then apply the model to some target projects (cross-project
defect prediction). Unfortunately, the performance of cross-
project defect prediction is generally poor, largely because of
feature distribution differences between the source and target
projects.

In this paper, we apply a state-of-the-art transfer learning
approach, TCA, to make feature distributions in source and
target projects similar. In addition, we propose a novel transfer
defect learning approach, TCA+, by extending TCA. Our exper-
imental results for eight open-source projects show that TCA+
significantly improves cross-project prediction performance.

Index Terms—cross-project defect prediction, transfer learn-
ing, empirical software engineering

I. INTRODUCTION

Recently, numerous effective software defect prediction
approaches have been proposed and received a tremendous
amount of attention [1], [2], [3], [4], [5]. Most approaches
employ machine learning classifiers to build a prediction
model from data sets mined from software repositories, and
the model is used to identify software defects. However, most
approaches are evaluated in within-project settings, i.e., a
prediction model is built from a part of a project and the model
is evaluated with the remainder of the project by 10-fold cross
validation [2], [6], [7], [8] and/or random instance splits [5],
[9], [10].

In practice, cross-project defect prediction is necessary. New
projects often do not have enough defect data to build a
prediction model. This cold-start is a well-known problem for
recommender systems [11] and can be addressed by using
cross-project defect prediction to build a prediction model
using data from other projects. The model is then applied to
new projects.

However, cross-project defect prediction often yields poor
performance. Zimmermann et al. [12] evaluated cross-project
defect prediction performance based on data from 12 projects
(622 combinations). They found that only 21 pairs yielded
reasonable prediction performance.

One of the main reasons for the poor cross-project predic-
tion performance is the difference between the data distribu-
tions of source and target projects. Most machine learning
classifiers are designed under the assumption that training and

test data are represented in the same feature space and are
drawn from the same data distribution [13]. This assumption
usually holds for within-project prediction but might not hold
for cross-project prediction.

To overcome the data distribution difference between source
and target projects, transfer learning techniques have been
proposed [13], [14], [15], [16], [17]. Most of them aim to
extract common knowledge from one task domain and transfer
it to another, and the transferred knowledge is used to train a
prediction model [13].

On the basis of transfer learning, we propose transfer defect
learning by adapting an existing method, Transfer Component
Analysis (TCA) [18] developed by the second author of this
paper. TCA aims to find a latent feature space for the data of
both the source and target projects by minimizing the distance
between the data distributions while preserving the original
data properties. Once the latent space is learned, we can map
the data of the source and target projects onto it. In this way,
TCA tries to discover a new feature representation for the data
of both the source and target projects, and to transform the
data based on the new feature representation. As a result, the
data distribution difference can be reduced. Then, we train a
classifier on the source project data transformed by TCA, and
finally apply the classifier to the transformed target project data
for prediction. Most standard machine learning classifiers can
be reused to achieve good performance using the transformed
data in cross-project defect prediction. Furthermore, TCA
does not use any defect information, as only data distribution
information is used in transforming both the source and target
project data.

However, we observed that the performance of cross-project
defect prediction with TCA is sensitive to normalization, a data
preprocessing technique widely used in machine learning [19].

Based on this observation, we propose TCA+, which au-
tomatically selects a suitable normalization before applying
TCA for cross-project defect prediction. Specifically, TCA+
provides a set of rules for selecting an appropriate normaliza-
tion option based on a given source–target pair to yield better
cross-project prediction performance.

We evaluate our transfer defect learning approaches with
two data sets found in the literature: ReLink [8] and
AEEEM [20]. ReLink includes three projects: Apache HTTP
server, Safe, and ZXing. AEEEM involves five projects:
Apache Lucene, Eclipse JDT, Eclipse PDE UI, Equinox,



and Mylyn.1 For these two data sets, we conduct 26 cross-
project defect prediction tasks in total. Our transfer learning
approaches significantly improve the performance of cross-
project defect prediction in terms of F-measure [21] for both
data sets. Logistic regression with TCA+ yields average F-
measures of 0.61 and 0.41 for ReLink and AEEEM respec-
tively, whereas the average F-measures without TCA+ are 0.49
and 0.32 respectively.

Although transfer learning has been shown to be effective
in other domains, to the best of our knowledge, we are the first
to observe improved prediction performance by applying TCA
for defect prediction. In addition, we propose TCA+, which
adapts TCA and selects suitable normalization options based
on a given cross-project prediction pair.

The remainder of this paper is organized as follows: Sec-
tion II introduces our approaches. Section III describes our
experimental setup. Section IV presents the results. Section V
discusses the threats to validity. Section VI surveys the
defect prediction and transfer learning techniques. Finally,
Section VII concludes this study and discusses plans for future
work.

II. APPROACH

In this section, we first provide an overview of transfer
defect learning, and then present our proposed solutions in
detail.

A. Transfer Defect Learning Overview

In our cross-project defect prediction, which learns a model
from a source project and applies the learned model to a target
project, we assume that the source and target projects have
the same set of features (Section III). However, their feature
distributions may differ.

The objective of our transfer defect learning is to make the
feature distributions of the source and target projects similar.
Numerous transfer learning techniques have been proposed by
the machine learning and data mining communities to address
such distribution difference problems [13], [14], [15], [16],
[17]. In this paper, we use a state-of-the-art transfer learning
approach, transfer component analysis (TCA) [18], for cross-
project defect prediction. In addition, we propose an extended
TCA, called TCA+, for the defect prediction domain. In the
following sections, we explain the basic notation and problem
definitions for transfer learning, and then we describe TCA
and TCA+ in detail.

B. Notation and Problem Definition

In the sequel, both matrices and vectors are written in
boldface (e.g., X, x). The transpose of a vector or matrix is
denoted by a superscript >, while tr(X) and X−1 denote the
trace and inverse, respectively, of X. For a matrix X ∈ Rn×m,
whose rows and columns correspond to instances and feature
vectors respectively, xi denotes the i-th instance of X and

1D’Ambros et al. [20] collected a data set of metrics for a benchmark of
existing defect prediction approaches. We call this benchmark data AEEEM,
after the first letters of five projects.

x(j) denotes the j-th feature vector, where 1 ≤ i ≤ n and
1 ≤ j ≤ m.

Based on this notation, our problem is formally defined as
follows:

• Let the given source project data set be DS =
{(xSi , ySi)}

n1
i=1, where xSi ⊆ R1×m is the input (e.g., a

file is represented by a vector of metrics), and ySi
is the

corresponding defect information (e.g., clean or buggy).
Let the given target project data set be DT = {xTi

}n2
i=1.

Assume that xSi
and xTi

are represented by the same set
of metrics. Let n1 and n2 be the numbers of files in the
source and target projects respectively. Let P(XS) and
P(XT ) be the marginal distributions of XS = {xSi

}n1
i=1

and XT = {xTi
}n2
i=1 from the source and target projects

respectively. In general, P(XS) and P(XT ) can be
different in the cross-project setting. The objective of
TCA is to explicitly learn a transformation mapping ϕ to
map the data of both the source and target projects onto a
latent feature space such that the difference between the
data distributions of ϕ(XS) and ϕ(XT ) becomes small,
and thus a standard model f trained on ϕ(XS) and the
corresponding defect information YS can achieve precise
predictions on ϕ(XT ).

The details of TCA are given in the following section.

C. Transfer Component Analysis

Transfer Component Analysis (TCA) [18], proposed by the
second author of this paper, is a state-of-the-art feature ex-
traction technique for transfer learning. The motivation behind
TCA is that some common latent factors may exist between
source and target domains, even though the observed features
of the domains are different. To reveal the latent factors,
we project the domains onto a new space, which is called
the latent space. In this way, the domain difference can be
reduced, while the original data structures (e.g., data variance
and local geometric structure) can be preserved. As a result,
the latent space spanned by the latent factors can be used as
a bridge for cross-domain classification tasks. For example,
Internet Explorer 8 and Firefox are two projects represented
by the same set of standard metrics, but they might have very
different metric values since their development processes are
significantly different [12]. However, both of them are Web
browsers. This implies that they have some commonality in
coding, even though the commonality may be hidden. If the
hidden commonality can be discovered and used to represent
the data of the two projects, then the cross-project difference
may be dramatically reduced. Thus, a defect prediction model
trained on the data of one project can be successfully applied
to the other project.

Mathematically, TCA tries to learn a transformation ϕ
to map the original data of source and target domains
to a latent space where the difference between domains
Dist(ϕ(XS), ϕ(XT )) is small and the data variance after
transformation Var({ϕ(XS), ϕ(XT )}) is large. Assume that
the transformation ϕ : Rm → Rd maps the original feature



TABLE I: Preliminary cross-project prediction results (F-measures) for Re-
Link using TCA with different normalization options under logistic regression.
Values greater than Baseline are in boldface.

Source⇒Target Baseline TCA
NoN N1 N2 N3 N4

Safe⇒Apache 0.52 0.68 0.75 0.60 0.72 0.64
Apache⇒Safe 0.56 0.71 0.54 0.64 0.48 0.72

Apache⇒ZXing 0.46 0.32 0.49 0.42 0.09 0.45

vectors to a d-dimensional subspace. Then, the objective of
TCA at a high level can be written as follows:

argmin
ϕ

Dist(ϕ(XS), ϕ(XT )) + λ R(ϕ), (1)

s.t. constraints on ϕ(XS) and ϕ(XT ),

where ϕ is to be learned by minimizing the difference be-
tween domains and satisfying some constraints to preserve
data variance after transformation, R(ϕ) is a regularization
term in ϕ to avoid overfitting, and λ ≥ 0 is a tradeoff
parameter to control the influence of the regularization term
in the objective. Regularization is a common technique used
in machine learning and data mining [22], [23].

In many real-world applications, the transformation ϕ can
also be taken as linear [24], [25], which can be expressed
as ϕ(x) = xΘ, where Θ ∈ Rm×d is a matrix that maps
m-dimensional feature vectors to d-dimensional ones. After
learning the transformation Θ by using TCA, we can map
the original data of the source and target domains, XS and
XT , to the latent space by using ϕ(XS) = XSΘ and
ϕ(XT ) = XTΘ, respectively. Then, we train a classifier f
on the transformed source data XSΘ and the corresponding
labels YS . Finally, we use the model f to make predictions
on the target domain test data f(XTΘ).

D. Normalization for data preprocessing

For TCA, we apply normalization, which is a data pre-
processing technique for machine learning and data min-
ing [19]. Normalization gives all features of a data set an
equal weight and is thus known to be useful for classification
algorithms [19]. Graf et al. also confirmed that normalization
can improve prediction performance of classification mod-
els [26]. For this reason, we normalize the data of source and
target projects before building classification models with TCA.
There are many normalization methods. In this study, we use
min-max and z-score normalization methods because these are
commonly used in the machine learning literature [19], [27].

The equations for normalization of both the source and
target project data used in our experiments are listed below.
• NoN: No normalization is applied.
• N1: For each value x(j)i of a feature vector x(j), x̃(j)i =

(x
(j)
i −min(x(j)))

max(x(j))−min(x(j))
, where x̃(j)i is the normalized value

of the original value x
(j)
i . Furthermore, min(x(j)) and

max(x(j)) are the minimum and maximum values of x(j)

respectively. Note that this equation is applicable to either
source or target project data.

• N2: For each value x(j)i of a feature vector x(j), x̃(j)i =
(x

(j)
i −mean(x(j)))

std(x(j))
, where mean(x(j)) and std(x(j)) are

the mean value and standard deviation of x(j) respec-
tively. Note that this equation is applicable to either
source or target project data.

• N3: For each value x(j)i of a feature vector x(j), x̃(j)i =
(x

(j)
i −mean(x(j)

srci
))

std(x
(j)
srci

)
, where x

(j)
srci is the j-th feature vector

of the source project data.
• N4: For each value x(j)i of a feature vector x(j), x̃(j)i =

(x
(j)
i −mean(x

(j)
tari

))

std(x
(j)
tari

)
, where x

(j)
tari is the j-th feature vector

of the target project data.
Option N1 represents the min-max normalization with a

value range from zero to one [19]. In other words, the
minimum and maximum values of an original data set are
transformed into zero and one respectively.

Option N2 represents the z-score normalization [27], which
makes the mean zero and the standard deviation one. From N2,
we also derive the options N3 and N4. In the case of N3, the
mean and standard deviation are computed only based on the
source project data but applied to both the source and target
project data for normalization. In contrast, in the case of N4,
the mean and standard deviation are computed only based on
the target project data but applied to both project data for
normalization. The reason we apply N3 and N4 derived from
N2 is to consider a case where the size of either the source or
target data set is too small to estimate the data distribution.

Table I shows preliminary F-measure results from using
TCA with different normalizations for some cross-prediction
pairs (e.g., Safe⇒Apache) on ReLink.2 We observed that
normalization on source and/or target data sets improves defect
prediction performance. However, prediction results of TCA
vary according to different normalization options. This clearly
shows that using a suitable normalization option can make
TCA more effective in terms of prediction performance.

E. TCA+

We extend TCA and propose TCA+ to achieve better
cross-project prediction performance. As shown in Table I,
we observed that prediction performance varies according to
different normalization selections. Based on this observation,
we propose an algorithm to select appropriate normalization
options for a given cross-prediction pair.

Normalization selections start with the basic idea of identi-
fying similarity of data set characteristics between the source
and target projects. To implement normalization selection, we
first define a Data set Characteristic Vector (DCV) and extract
a DCV from each project. To extract a DCV, we measure
the distance between a pair of instances. Euclidean distance,
which is the most popular distance measure [19], is used in this
approach. For each project data set, we compute the overall
Euclidean distance of all pairs of instances, DIST , as follows:

DIST = {dij : ∀i, j, 1 ≤ i < n, 1 < j ≤ n, i < j}, (2)

2Hereafter a rightward double arrow (⇒) denotes prediction.



TABLE II: Six elements of a characteristic vector for a data set.

Name Description

dist mean Mean value of DIST

dist median Median value of DIST

dist min Minimum value of DIST

dist max Maximum value of DIST

dist std Standard deviation of DIST

numInstances The number of instances

TABLE III: Conditions for assignment of nominal values to similarity vector
sS⇒T .

Nominal values of sS⇒T [e] Condition

MUCH MORE cS [e]× 1.6 < cT [e]

MORE cS [e]× 1.3 < cT [e] ≤ cS [e]× 1.6

SLIGHTLY MORE cS [e]× 1.1 < cT [e] ≤ cS [e]× 1.3

SAME cS [e]× 0.9 ≤ cT [e] ≤ cS [e]× 1.1

SLIGHTLY LESS cS [e]× 0.7 ≤ cT [e] < cS [e]× 0.9

LESS cS [e]× 0.4 ≤ cT [e] < cS [e]× 0.7

MUCH LESS cT [e] < cS [e]× 0.4

where dij is the Euclidean distance between instances i and
j, and n is the number of instances of a project data set.
Then, we compute the minimum, maximum, mean, median,
and standard deviation of DIST as characteristics to represent
the project data. In addition, we include the number of data
set instances into the characteristic vector. The reason for this
is that more instances can provide more information to build a
better prediction model. Thus, a DCV includes six elements as
shown in Table II. For a source project S and a target project
T , we represent the DCVs by cS and cT respectively.

To measure the similarity between a source project S and
a target project T using DCVs, we define a similarity vector
(SV), which represents the difference between cS and cT with
a degree of similarity such as “much more” (very different),
“less” (different), or “same”.

We compute the degree of similarity, sS⇒T [e], for each
element e of a DCV, where cS[e] and cT[e] are the values of
an element e in cS and cT respectively, as shown in Table III.
To compute the degree of similarity, we multiply cS[e] by
a certain factor and then compare the result with cT[e]. In
the case of “SAME”, we used 0.9 and 1.1 as factors to
allow small deviations [12]. By increasing or decreasing those
factors, we change the extent of deviation and define various
degrees of similarity: MUCH LESS, LESS, SLIGHTLY LESS,
SLIGHTLY MORE, MORE, and MUCH MORE. For exam-
ple, if the mean distance (dist mean) of instances in Apache
(source) is cApache[dist mean] = 905, and the corresponding
value for Safe (target) is cSafe[dist mean] = 238, the degree
of similarity for those values, sApache⇒Safe[dist mean], is
designated as “MUCH LESS” (238 < 905× 0.4 = 362).

Using an SV and properties of normalization options, we
propose a set of decision rules to select suitable normalization
options for TCA as follows (the rules are sequentially applied).

Rule1: If sS⇒T [dist mean] and sS⇒T [dist std] are in-
dividually “SAME”, do not apply any normalization. If the
means and standard deviations of DIST for the source and

target data are similar, we assume their data sets are similar
enough, and do not normalize data.

Rule2: If sS⇒T [dist min], sS⇒T [dist max], and
sS⇒T [numInstaces] are individually either “MUCH LESS”
or “MUCH MORE,” choose N1 (min-max normalization).
Both the minimum and maximum distances of instances
may depend on the minimum and maximum values of each
feature in the original data. A large gap in dist max or
dist min between the source and target data may indicate
different distributions. This distribution difference may
generate more effects when there is a great difference in
numInstances between two projects. Thus, we also include
sS⇒T [numInstances] in this rule.

Rule3: N3 is a variation of z-score normalization, which
uses the dist mean and dist std of only a source project
for normalization. Thus, we apply N3 when a target project
belongs to one of these: First, sS⇒T [dist std] is “MUCH
MORE” and the number of instances of a target project is less
than that of a source project. In this case, the target data are
sparse as dist std is large. In the second case, sS⇒T [dist std]
is “MUCH LESS” and the number of instances of a target
project is greater than that of a source project. This indicates
that the target data are dense. We regard these two cases
to imply that the target data may have very little statistical
information, so we normalize both the source and target data
by using the dist mean and dist std of the source project.

Rule4: N4 is another variation of z-score normalization,
which uses the dist mean and dist std of only a target
project for normalization. Since N4 and N3 are symmetric,
we derive a rule for N4 symmetrically from that for N3.
In other words, sS⇒T [dist std] is “MUCH MORE” and the
number of instances of a target project is greater than that
of a source project. As another condition, sS⇒T [dist std] is
“MUCH LESS” and the number of instances of a target project
is less than that of a source project.

Rule5: If none of the rules (Rules 1 to 4) are applicable,
we choose N2 (z-score normalization) to make the mean and
standard deviation similar between two projects.

Algorithm 1 formally shows the decision rules for TCA+.
We evaluate the rules for TCA+ in Section IV-B.

III. EXPERIMENTAL SETUP

In this section, we describe the experimental setup in
detail, including the defect prediction process, subject systems,
metrics (features), and evaluation measures.

A. Defect Prediction Process

Figure 1 shows the file-level defect prediction process
used in our experiment. This is a typical prediction process
commonly used in the literature [6], [7], [28], [29].

The first step of the process is collecting files (instances)
and labeling them. The labeling task is based on the number of
post-release-defects for each file. If a file has at least one post-
release-defect, it is labeled as buggy. Otherwise, it is labeled
as clean. Then, defect prediction metrics such as complexity
metrics [30], [31] are used as features. The instance features



Algorithm 1 Decision Rules for Normalization Selections
Input: Similarity vector SS⇒T , where S and T are source and target

projects.
Output: Normalization option (NoN|N1|N2|N3|N4)

/*Rule1*/
1: if SS⇒T [dist mean] = SAME and

SS⇒T [dist std] = SAME then
2: return NoN
3: end if

/*Rule2*/
4: if SS⇒T [numInstances] and SS⇒T [dist min] and

SS⇒T [dist max] are MUCH MORE or MUCH LESS then
5: return N1
6: end if

/*Rule3*/
7: if (SS⇒T [dist std] = MUCH MORE and

SS⇒T [numInstances] < SAME) or
(SS⇒T [dist std] = MUCH LESS and
SS⇒T [numInstances] > SAME) then

8: return N3
9: end if

/*Rule4*/
10: if (SS⇒T [dist std] = MUCH MORE and

SS⇒T [numInstances] = MUCH MORE) or
(SS⇒T [dist std] = MUCH LESS and
SS⇒T [numInstances] = MUCH LESS) then

11: return N4
12: end if

/*Ruel5*/
13: return N2

Software
Archives

Instances

(1) Labeling
(buggy / clean)

Metrics

(2) Feature
extraction

Training
Instances

(3) Creating
a training corpus

Machine
Learner

(4) Building
a prediction model Instance

Classification

(5) Prediction &
evaluation

Fig. 1: Defect Prediction Process [6]

and labels are used to train prediction models using machine
learning classifiers. Finally, the trained models predict whether
new instances are buggy or clean.

The instances used to build models constitute a training set,
whereas those used to test the learned models constitute a
test set. In within-project prediction, the training and test sets
are from the same project. For cross-project prediction, the
training set is from one project (the source) and the test set is
from another project (the target).

B. Benchmark Sets

For our experiments, we used two existing defect benchmark
data sets, ReLink and AEEEM [8], [20]. Table IV and V
summarize these data sets.

The first data set, ReLink, was collected by Wu et al. [8],
and the defect information in ReLink has been manually veri-
fied and corrected. Bird et al. found labeling bias in automatic
defect information extraction [32]. They also found that noise
has a non-trivial impact on defect prediction performance [32],
[33]. To avoid noise and its influence, we use manually verified

TABLE VI: List of metrics selected for ReLink. (For a detailed description
of all metrics used, refer to the Understand Web site [34].)

Metrics Description
AvgCyclomatic Average cyclomatic complexity for all nested

functions of methods.
AvgLine Average number of lines for all nested functions

or methods.
CountLine Number of all lines for all nested functions or

methods.
CountStmt Number of statements.

MaxCyclomatic Maximum cyclomatic complexity of all nested
functions or methods.

RatioCommentToCode Ratio of comment lines to code lines.
SumCyclomatic Sum of cyclomatic complexity of all nested

functions or methods.

defect data such as ReLink. ReLink has 26 complexity metrics,
which are widely used in defect prediction [8], [30], [31],
[33]. Table VI lists only 7 metrics selected from among the
26 metrics in the interest of brevity (for a detailed description
of each metric, refer to the Understand web site [34]).

The second data set, AEEEM, was collected by D’Ambros
et al. [20]. AEEEM consists of 61 metrics: 17 source code met-
rics, 5 previous-defect metrics, 5 entropy-of-change metrics,
17 entropy-of-source-code metrics, and 17 churn-of-source-
code metrics [20]. In particular, AEEEM includes linearly
decayed entropy (LDHH) and weighted churn (WCHU). Both
LDHH and WCHU have been verified as informative defect
predictors [20]. Table VII lists selected metrics among the 61
metrics.

C. Experimental Design

To evaluate our proposed approaches, we conduct exper-
iments in different settings: within-project defect prediction,
cross-project defect prediction without transfer learning, and
cross-project defect prediction with TCA or TCA+.

1) Within-project prediction: We present the within-project
defect prediction results, since these results provide references
for cross-project prediction results.

For within-project defect prediction, we used the 50:50 ran-
dom split to obtain training and test sets [35]. This provides a
setting similar to that of cross-project prediction, assuming that
the data sizes of the training set (source) and test set (target)
are similar. One alternative would be 10-fold cross validation,
but it essentially uses 90% training data and 10% test data.
Moreover, random split is widely used in the literature [5],
[9], [10].

The 50:50 random split randomly selects 50% of the in-
stances for a training set, and the remaining 50% for a test set.
This random selection process for training and test sets may
be biased and may affect the prediction performance. Hence,
we repeat this process 100 times with different 50:50 random
splits and report the average prediction results.

2) Cross-project prediction without transfer learning: For
cross-project prediction, we first identify all combinations of
the project pairs in data sets. For example, ReLink has six
cross-project combinations: Apache⇒Safe, Apache⇒ZXing,
Safe⇒Apache, Safe⇒ZXing, ZXing⇒Apache, and



TABLE IV: Projects of ReLink used in the experiment [8].

Subject Type Version # of files(instances) # of buggy files (%) # of metrics
Apache HTTP Server Web server 2.0 194 98(50.52%) 26

OpenIntents Safe Security Revision 1088–2073 56 22(39.29%) 26
ZXing Bar-code reader library 1.6 399 118(29.57%) 26

TABLE V: Projects of AEEEM used in the experiment [20].

Subject Type Time period # of files(instances) # of buggy files (%) # of metrics
Equinox (EQ) OSGi framework 1.1.2005–6.25.2008 325 129(39.69%) 61

Eclipse JDT Core (JDT) Development 1.1.2005–6.17.2008 997 206(20.66%) 61
Apache Lucene (LC) Text search engine library 1.1.2005–10.8.2008 399 691(9.26%) 61

Mylyn (ML) Task management 1.17.2005–3.17.2009 1862 245(13.16%) 61
Eclipse PDE UI (PDE) Development 1.1.2005–9.11.2008 1492 209(14.01%) 61

TABLE VII: List of metrics selected for AEEEM. (For a detailed description of all metrics we used, refer to D’Ambros et al. [20].

Category Metrics Description

Source code ck oo cbo Coupling Between Objects
ck oo numberOfLinesOfCode Number of lines of code.

Previous defects numberOfBugsFoundUntil Number of all bugs.
numberOfCriticalBugsFoundUntil Number of bugs whose severity is critical and blocker.

Entropy CvsEntropy Entropy of code changes.
CvsLogEntropy Logarithmically decayed CvsEntropy.

Entropy of source code LDHH cbo Linearly decayed entropy of ck oo cbo.
LDHH numberOfLinesOfCode Linearly decayed entropy of ck oo numberOfLinesOfCode.

Churn of source code WCHU cbo Weighted churn of ck oo cbo.
WCHU numberOfLinesOfCode Weighted churn of ck oo numberOfLinesOfCode.

ZXing⇒Safe. In the same manner, we also identify all
20 cross-project combinations from the five projects of
AEEEM. We cannot mix the projects of ReLink with those
of AEEEM, since they have different sets of metrics.

Then, we build a prediction model using all instances from
one project (source) and predict defects in another project
(target) by using the model. For example, we build a prediction
model from all instances in Apache and use that model to
predict defects for all instances in Safe (Apache⇒Safe).

Unlike within-project defect prediction, the evaluation of
cross-project prediction does not involve any randomness,
because all instances from one project constitute a training
set and all instances from another project constitute a test set.
We performed the evaluation once.

3) Cross-project prediction with transfer learning (TCA):
The third phase of our experiments is cross-project defect
prediction with TCA. This is similar to the cross-project
prediction setting without transfer learning. However, a pre-
diction model trained on the source project is not applied
directly to the target project. Instead, we first transform both
the source and target data sets using TCA. Then, we train a
prediction model on the transformed source project and use
that prediction model to predict defects in the transformed
target project.

We compare the defect prediction performance for various
normalization options in Section IV.

4) Cross-project prediction with TCA+: We conduct cross-
project defect prediction with TCA+, which consists of two
steps: normalization selections and TCA application. As in-
troduced in Section II-E, we apply Algorithm 1 to select a
normalization option for each source-target project pair before
applying TCA. We report the cross prediction results of TCA+

for both ReLink and AEEEM in Section IV.

D. Machine Learning Classifier

As the underlying machine learning classifier for both
within- and cross-project prediction, we use logistic regres-
sion, which is widely used in the defect prediction litera-
ture [6], [7], [12], [36], [37]. Specifically, we use the logis-
tic regression implemented in LIBLINEAR [38], an award-
winning library for large linear classification, which is widely
used in machine learning and data mining [39], [40]. For
LIBLINEAR execution, we use the options “-S 0” (i.e., logistic
regression) and “-B -1” (i.e., no bias term added).

E. Evaluation Measures

To evaluate prediction accuracy, we use the F-measure [21],
which is the harmonic mean of precision and recall.

The following are used to define precision, recall, and F-
measure: (i) predicting a buggy instance as buggy (b → b);
(ii) predicting a buggy instance as clean (b → c); and (iii)
predicting a clean instance as buggy (c → b). We use these
outcomes to evaluate the accuracy of defect prediction with
the measures defined below [21], [23], [41]:

Precision: The ratio of the number of instances correctly
classified as buggy (Nb→b) to the number of instances classi-
fied as buggy.

Buggy precision: P (b) =
Nb→b

Nb→b +Nc→b
(3)

Recall: The ratio of the number of instances correctly
classified as buggy (Nb→b) to the number of buggy instances.

Buggy recall: R(b) =
Nb→b

Nb→b +Nb→c
(4)



F-measure: A composite measure of precision P(b) and
recall R(b) for buggy instances.

Buggy F-measure: F (b) =
2× P (b)×R(b)
P (b) +R(b)

(5)

Usually, there are trade-offs between precision and recall.
For example, by sacrificing precision, it may be possible to
improve recall. These trade-offs make it difficult to compare
the performances of several prediction models by using only
either the precision or recall value [2], [23], [41]. For this
reason, we compare prediction results using F-measure values,
which fall in the range [0, 1]. The higher is the F-measure, the
better is the performance.

IV. RESULTS

In this section, we present detailed experimental results for
TCA with different normalization options (Section IV-A) and
TCA+ (Section IV-B).

A. TCA with Different Normalization Options

Table VIII and IX list F-measure values of cross-project
prediction applying TCA with different normalization options.
In each table, the last row contains the average F-measures
of all cross prediction combinations for each normalization
option, while the other rows contain the F-measures of every
cross-prediction combination. The Baseline column lists the
results of cross-project prediction without TCA. We used
logistic regression to build classifiers.

Table VIII and IX show that different normalization op-
tions affect the prediction results. Compared to Baseline, we
can observe increments in average F-measure with several
normalization options. For example, the average F-measure
for ReLink with N4 (Table VIII) represents an increase from
0.49 to 0.59. Likewise, the average F-measure for AEEEM
(Table IX) is significantly increased from 0.31 to 0.41 by using
N2 option. However, TCA with NoN or N1 does not show any
improvement in terms of average F-measure. For example, the
average F-measure for ReLink with N1 (Table VIII) represents
a decrease from 0.49 to 0.44.

Table VIII and IX also list detailed F-measures for each
cross-prediction combination. F-measure values greater than
the corresponding Baseline values are presented in boldface.

In the case of ReLink with N2, the F-measures of four
out of six cross-prediction combinations increased by 0.06–
0.33. However, two out of the six combinations decreased by
0.04. This indicates that, for some prediction combinations,
TCA cannot yield better cross-project defect prediction per-
formance than the Baseline. This indicates that, for a specific
prediction combination, TCA might not find a correct latent
space spanned by common latent features. To address this
issue, we propose TCA+, which is an extension of TCA
to determine the suitable normalization option for a given
prediction combination as explained in Section II-E.

TABLE VIII: Cross-project prediction results for ReLink using TCA with
various normalization options under logistic regression. Values greater than
Baseline are in boldface.

Source⇒Target Baseline TCA
NoN N1 N2 N3 N4

Safe⇒Apache 0.52 0.68 0.75 0.60 0.72 0.64
ZXing⇒Apache 0.69 0.30 0.26 0.65 0.72 0.64
Apache⇒Safe 0.56 0.71 0.54 0.64 0.48 0.72
ZXing⇒Safe 0.59 0.35 0.08 0.65 0.64 0.70

Apache⇒ZXing 0.46 0.32 0.49 0.42 0.09 0.45
Safe⇒ZXing 0.10 0.35 0.52 0.43 0.29 0.42

Average 0.49 0.45 0.44 0.57 0.49 0.59

TABLE IX: Cross-project prediction results for AEEEM using TCA with
various normalization options under logistic regression. Values greater than
Baseline are in boldface.

Source⇒Target Baseline TCA
NoN N1 N2 N3 N4

JDT⇒EQ 0.31 0.17 0.43 0.59 0.51 0.60
LC⇒EQ 0.50 0.12 0.29 0.62 0.68 0.60
ML⇒EQ 0.24 0.19 0.19 0.56 0.71 0.64
PDE⇒EQ 0.43 0.19 0.13 0.58 0.60 0.52
EQ⇒JDT 0.39 0.39 0.36 0.48 0.43 0.54
LC⇒JDT 0.48 0.00 0.41 0.56 0.43 0.49

PDE⇒JDT 0.47 0.09 0.02 0.54 0.48 0.48
ML⇒JDT 0.42 0.14 0.25 0.52 0.43 0.44
EQ⇒LC 0.27 0.27 0.21 0.27 0.27 0.25
JDT⇒LC 0.24 0.03 0.29 0.31 0.35 0.26
ML⇒LC 0.10 0.05 0.14 0.25 0.24 0.27
PDE⇒LC 0.33 0.09 0.06 0.27 0.33 0.25
EQ⇒ML 0.19 0.29 0.20 0.23 0.04 0.24
JDT⇒ML 0.27 0.06 0.27 0.32 0.36 0.25
LC⇒ML 0.20 0.00 0.20 0.29 0.22 0.27

PDE⇒ML 0.27 0.04 0.11 0.29 0.34 0.21
EQ⇒PDE 0.31 0.36 0.25 0.33 0.28 0.34
JDT⇒PDE 0.27 0.09 0.38 0.39 0.38 0.36
LC⇒PDE 0.32 0.02 0.25 0.37 0.32 0.35
ML⇒PDE 0.27 0.13 0.32 0.37 0.27 0.35

Average 0.31 0.14 0.24 0.41 0.38 0.38

TCA with N2, N3, or N4 significantly improves
cross-project defect prediction results of both ReLink and

AEEEM data sets in terms of average F-measure. However,
the results of some cross-prediction combinations are not

improved by TCA.

B. TCA+

Table X and XI compare F-measure values between TCA
and TCA+. In particular, we compare TCA+ to TCA with
N4 and N2, which lead to the best results for ReLink and
AEEEM, respectively. F-measure values greater than Baseline
values (cross-prediction without TCA or TCA+) are presented
in boldface.

As shown in Table X and XI, the F-measures with TCA+
increase for all cross-prediction combinations in comparison to
Baseline. For example, the F-measure of ZXing⇒Apache with
TCA+ (0.72) is above Baseline (0.69), while the F-measure
(0.64) with TCA (N4) is less than the Baseline.



TABLE X: Comparison of cross- and within-project prediction results between
TCA+ and the best TCA option N4, in ReLink. Logistic regression is used.
Values greater than Baseline are in boldface. Underline means that all values
of source and target combinations with a specific normalization option are
increased compared to Baseline.

Source⇒Target Baseline TCA (N4) TCA+ Within
Target⇒Target

Safe⇒Apache 0.52 0.64 0.64 0.64
ZXing⇒Apache 0.69 0.64 0.72
Apache⇒Safe 0.49 0.72 0.72 0.62
ZXing⇒Safe 0.59 0.70 0.64

Apache⇒ZXing 0.46 0.45 0.49 0.33
Safe⇒ZXing 0.10 0.42 0.43

Average 0.49 0.59 0.61 0.53

TABLE XI: Comparison of cross- and within-project prediction results be-
tween TCA+ and the best TCA option N2, for AEEEM. Logistic regression
is used. Values greater than Baseline are in boldface. Underline means that all
values of source and target combinations with a specific normalization option
are increased compared to Baseline.

Source⇒Target Baseline TCA (N2) TCA+ Within
Target⇒Target

JDT⇒EQ 0.31 0.59 0.60

0.58LC⇒EQ 0.50 0.62 0.62
ML⇒EQ 0.24 0.56 0.56
PDE⇒EQ 0.43 0.58 0.60
EQ⇒JDT 0.39 0.48 0.54

0.56LC⇒JDT 0.48 0.56 0.56
ML⇒JDT 0.42 0.52 0.43
PDE⇒JDT 0.47 0.54 0.48

EQ⇒LC 0.27 0.27 0.27

0.37JDT⇒LC 0.24 0.31 0.31
ML⇒LC 0.10 0.25 0.25
PDE⇒LC 0.33 0.27 0.33
EQ⇒ML 0.19 0.23 0.23

0.27JDT⇒ML 0.27 0.32 0.36
LC⇒ML 0.20 0.29 0.29

PDE⇒ML 0.27 0.29 0.29
EQ⇒PDE 0.31 0.33 0.33

0.30JDT⇒PDE 0.27 0.39 0.38
LC⇒PDE 0.32 0.37 0.37
ML⇒PDE 0.27 0.37 0.37

Average 0.32 0.41 0.41 0.42

For some cross-prediction combinations, TCA+ does not
outperform TCA. In the case of ReLink (Table X), the F-
measure value of Apache⇒Safe with TCA (0.72) is the same
as that with TCA+. Moreover, the F-measure of ZXing⇒Safe
with TCA (0.70) is greater than that with TCA+ (0.64).
However, TCA+ outperforms TCA for most combinations, and
TCA+ outperforms Baseline for all combinations. In addition,
we conducted the Wilcoxon matched-pairs test [42] to check
if the differences are statistically significant. The p-value for
ReLink is 0.03 and for AEEEM is 0.000 < 0.05, which
indicates that the differences between Baseline values and
TCA+ values are statistically significant with 95% confidence
(p-value < 0.05).

TCA+ outperforms Baseline for all combinations. The
difference is statistically significant (p-value < 0.05).

Table X and XI also show within-project (Target⇒Target)
performances as references. For example, the F-measure of
the within-project prediction Apache⇒Apache for ReLink
(Table X) is 0.64. The within-project performance is consider-
ably better than that of cross-project prediction (Baseline) as
confirmed in [12], [43]. For example, in Table XI, the average
F-measure of EQ⇒EQ (0.58) is better than that of ML⇒EQ
(0.24). However, the cross-project prediction performance with
TCA+ is comparable to within-project prediction performance.
For example, the F-measure of ML⇒EQ with TCA+ (0.56)
is a bit lower (decreased by 0.02). In case of LC⇒EQ, the F-
measure (0.62) is greater than the within-project result (0.58).

The performance of cross-project prediction with TCA+ is
comparable to within-project prediction performance.

V. THREATS TO VALIDITY

Systems are open-source projects. All systems examined
in this paper were developed as open-source projects. Hence,
they might not be representative of closed-source projects.

Experimental results might not be generalizable. We
conducted our experiments using eight projects included in
the ReLink and AEEEM data sets. It is possible that we
accidentally selected systems that have better (or worse) than
average cross-project defect prediction performance.

Decision rules in TCA+ might not be generalizable. The
TCA+ rules were built by understanding normalization options
and differences between source-target project data sets. We
showed that these rules are effective for ReLink and AEEEM.
However, these rules might not be generalizable to other data
sets.

VI. RELATED WORK

A. Defect Prediction

Software defect prediction is an active research area [2],
[5], [28], [30], [31] in software engineering. Researchers have
proposed new defect prediction algorithms and/or new metrics
to predict defects effectively. Most of them predict defects
through machine learning approaches [2], [5], [6], [44], [45].
However, most prediction models are evaluated in within-
project prediction settings [2], [5], [6].

Recently, many researchers have studied cross-project defect
prediction [12], [43], [46], [47], [48]. Zimmermann et al. [12]
evaluated cross-project prediction performance for 12 projects
and their 622 combinations. They found that current defect
prediction models do not perform well for cross-project defect
prediction. Turhan et al. [43] analyzed Cross-Company (CC)
and Within-Company (WC) data for defect prediction, and
they confirmed the difficulty of reusing CC data to predict
defects in the software of other companies. Further, Turhan
et al. applied nearest-neighbor (NN) filtering for CC data
to select instances for better cross-project prediction [43].
Premraj and Herzig [46] compared network and code metrics



for defect prediction and also built six cross-project defect
prediction models using those metrics sets. Results in their
study confirm that cross-project defect prediction is a challeng-
ing problem. However, Rahman et al.found that cross-project
defect prediction works as well as within-project prediction in
terms of cost effectiveness [47].

Ma et al. [48] proposed a novel cross-company defect pre-
diction algorithm, Transfer Naive Bayes (TNB), which adapts
Naive Bayes with weighting training data. However, TNB
is designed only for Naive Bayes, since it tunes conditional
probabilities for each instance in a source project.

Our approach transforms data of both source and target
projects, and transformed data can be used for any machine
learning algorithms to facilitate cross-project defect prediction.
We showed that techniques for transforming data sets improve
cross-project prediction performance without altering the ex-
isting prediction models.

B. Transfer Learning

Transfer learning has been attracting increasing attention in
machine learning and data mining over the last six years [13].
Most machine learning approaches achieve good performance
when training data and test data have the same feature space
and distribution [13]. Learning models need to be rebuilt when
the feature space and distribution change. In this case, it
is necessary to recollect training data and label them again.
Rebuilding a model is often expensive, and labeling new
training data requires considerable effort. Transfer learning
addresses these issues by transferring knowledge extracted
from a related but different domain, which can be regarded
as the source project in defect prediction, to build precise
predictive models in the domain of interest, which can be
regarded as the target project.

The problem setting of cross-project defect prediction is
related to the domain adaptation setting in transfer learn-
ing [13]. Provided that sufficient labeled data are available in
the source domain, the previous works in domain adaptation
can be classified into two sub-settings: (1) a small amount
of labeled data are available in the target domain [49], [50]
or (2) only some unlabeled data are available in the target
domain [15], [50], [51]. In this paper, we focus on the second
sub-setting by assuming that in the target project, no defect
information is available.

When only some unlabeled data are available in the tar-
get domain, the previous domain adaptation approaches can
be classified as either feature-based or instance-based ap-
proaches [13]. Feature-based approaches assume that a so-
called good feature representation exists across the source
and target domains [52]. Based on this feature representation,
the domain difference can be reduced and many existing
models can be reused for cross-domain classification. Some
methods have been proposed for uncovering such good feature
representations. These include topic-bridged probability latent
semantic analysis (TPLSA) [53], maximum mean discrepancy
embedding (MMDE) [51], and TCA [18]. In this paper, we
have applied TCA, which is a state-of-the-art feature-based

transfer learning method, for cross-project defect prediction.
Furthermore, we have proposed TCA+ by extending TCA
to exhibit to better prediction performance for the defect
prediction domain.

In terms of applications, transfer learning has been widely
studied to address cross-domain problems in text classifica-
tion [15], [53], [54], natural language processing [25], [50],
WiFi-based indoor localization [55], and computer vision [56].
In this study, we adapted transfer learning for cross-project
defect prediction.

VII. CONCLUSION

In this paper, we applied transfer learning approaches, TCA
and TCA+, for cross-project defect prediction. TCA [18] is
a state-of-the-art transfer learning technique proposed by the
second author of this paper, and TCA+ is a novel approach
to select suitable normalization options for TCA of a given
source-target project pair. Our empirical study has shown that
TCA+ significantly improves cross-project defect prediction
performance.

Although transfer learning has been shown to be effective
in other domains, we are the first to observe improved pre-
diction performance by applying TCA for cross-project defect
prediction. In addition, we proposed TCA+, which provides
decision rules to select suitable normalization options based
on a given cross-project prediction pair.

Transfer learning may benefit other prediction and recom-
mendation systems [57], [58]. Furthermore, it is possible to
transfer knowledge across domains. For example, we might
gain knowledge from mailing lists [59] and then apply it
to the bug report triage problem [60] after transferring the
knowledge. We plan to explore other applications of transfer
learning, including cross-domain knowledge transfer.

All data used in our experiments are publicly available
at https://sites.google.com/site/transferdefect/.
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